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This paper is affectionately dedicated to Professor Rudolf Zahradnik – an esteemed scientist and
teacher, a cherished colleague and friend – on the occasion of his 70th birthday.

A classical multireference problem – the singlet–triplet separation in methylene – is examined by the
recently introduced reduced multireference (RMR) singles and doubles coupled cluster (CCSD)
method, using both double zeta plus polarization (DZP) and large atomic natural orbital (ANO) basis
sets. In the former case, the performance of the RMR CCSD as well as of other approaches is as-
sessed by a comparison with the full configuration interaction (FCI) result that represents the exact
solution for this basis, while in the latter case a comparison is made with the experiment. It is shown
that using a minimal two-configuration reference space, the RMR CCSD result compares well with
either FCI or experiment; and is of the same quality as that provided by the two-reference state
universal MR CCSD theory. Both MR CCSD approaches give a balanced description for the singlet
and triplet states involved and correct the shortcomings of the single reference CCSD approach that
is lacking in the presence of nondynamical correlation effects.
Key words: Multireference coupled clusters; Methylene; Electron correlation; Singlet-triplet separation;
Ab initio calculations.

The single reference (SR) coupled cluster (CC) and multireference (MR) configuration
interaction (CI) methods with singles and doubles (SD) are two highly correlated
methods that are routinely used for an accurate account of electron correlation effects.
Nonetheless, when dealing with states having a multireference character – which often
arise when a molecule separates into fragments or is promoted to one of its excited
states, as well as in certain other cases – neither SR CCSD nor MR CISD is completely
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satisfactory. Although the SR CCSD method handles very effectively the dynamic
correlation effects, its performance deteriorates when nondynamic correlation plays a
significant role. On the other hand, the MR CISD method is very effective in treating
the nondynamic correlation, but less so when accounting for the dynamic correlation
effects. In fact, MR CISD relying on a small reference space is incapable to properly
describe dynamic correlation. One thus compensates this deficiency by employing a
much larger reference space than is required for an appropriate zero-order description,
which in turn leads to problems associated with large active spaces. It is thus important
to develop a MR CC approach which can accurately describe both dynamic and non-
dynamic correlation effects, while relying on a minimal reference space, thus requiring
a minimal computational effort. For this very reason we have developed the so-called
reduced multi-reference (RMR) CCSD approach1–3 described below.

In this paper we discuss the above points and apply the RMR CCSD method to a
simple, yet important problem of the singlet–triplet (3B1–

1A1) separation in methylene
(CH2). While the Hartree–Fock (HF) limit4 gives a splitting of 25 kcal/mol, which is
about 2.5 times larger than the experimental estimate5 (≈9.4 kcal/mol), all correlated
methods, including the multiconfigurational self consistent-field (MCSCF) method,
generalized valence bond (GVB) method, many-body perturbation theory (MBPT), as
well as limited CI or CC methods, give a qualitatively correct value for this separ-
ation4,6–10. Nonetheless, the nondynamical correlation plays here an important role. The
inadequacy of the HF result stems from the fact that the 3B1 and 1A1 zero-order wave
functions employ different active spaces. Since the highest occupied molecular orbital
(HOMO) (3a1) and the lowest unoccupied MO (LUMO) (1b1) are utilized in the 3B1

zero-order HF wave function, the same two orbitals should be used as the active orbi-
tals in the zero-order description of the 1A1 state in order to achieve an unbiased treat-
ment. Such a two-electron/two-orbital active space leads to a one-configuration wave
function for the 3B1 state and a two-configuration wave function for the 1A1 state. In the
basis set limit, such simplest correlated method predicts the separation of 11 kcal/mol
(ref.4).

In any case, an accurate computation of this quantity proved to be a challenging
problem in spite of the fact that we deal with a very simple molecular system. For this
very reason this problem is often employed to test various sophisticated treatments of
electron correlation. The key problem is the correct description of the 1A1 state, which
has a two-reference character. Even the very powerful CCSD method in its SR form is
unable to provide a highly accurate result, not to mention other “lower level” theories. The
SR CCSD basis set limit is likely to exceed the value of 10 kcal/mol (one gets 10.1 kcal/mol
when h type functions are included11), so that one has to include triples in order to
achieve a sufficient accuracy10. The MR CISD method relying on a two-configuration
reference space (2R) also yields a very good, highly correlated wave function, yet a
definite non-negligible discrepancy from the experiment remains. To eliminate this dis-
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crepancy, one has to use a large reference space, such as the all valence 6-electron/6-orbital
complete active space (CAS).

The shortcomings of both the SR CCSD and 2R-CISD methods are easy to under-
stand. In the first case, single and double excitations are accounted for explicitly, while
higher excitations are handled via their disconnected components. Thus, only one- and
two-body connected clusters, relative to the leading configuration that is used as a
reference, appear explicitly in the theory. However, in view of the importance of the
second leading configuration, as implied by the structure of the two-configuration
MCSCF wave function, the connected singles and doubles relative to both leading con-
figurations should appear explicitly in the theory. Otherwise, the important nondynami-
cal correlation effects will not be properly accounted for. This is clearly the major
source of the inadequacy of the SR CCSD description. On the other hand, in the 2R-CISD
wave function, only singly and doubly excited configurations from two references are
considered. Consequently, most higher than doubly excited configurations (relative to,
e.g., the first reference) will be absent from the resulting wave function. In order to
account for these higher excited configurations, it is thus necessary to increase the size
of the active or model space employed. Thus, while the 2R-CISD method can account
for the most important nondynamical correlation effects, it will be lacking in the de-
scription of dynamical correlation, unless based on a much larger than 2R active space.

Since the CC Ansatz handles very effectively dynamic correlation, while the MR-
type wave function is required to describe nondynamical correlation effects, the most
satisfactory and cost effective approach should be achieved via a suitable version of
MR CCSD: The exponential Ansatz would eliminate a large active space problem of
the MR CISD method, while an appropriate zero-order reference space would ensure an
unbiased account of both dynamic and nondynamic correlations. In the past, much at-
tention has been devoted to the development of MR CC theories, in the hope of achiev-
ing the above stated objective (cf. ref.12). Our recently developed RMR CCSD
method1–3 represents a rather simple and straightforward approach directly combining
the MR CISD and SR CCSD Ansätze. As the above discussion of methylene implies,
these Ansätze are mutually complementary: The connected SD clusters that originate
from the second configuration are absent in the SR CCSD Ansatz, but are contained in
the 2R-CISD wave function, while an inadequate description of higher than SD excita-
tions out of the two references is automatically taken care of by the disconnected clus-
ters arising from the SR CCSD exponential cluster Ansatz. Thus, in the RMR CCSD
method1–3, one accounts for the SD connected clusters relative to the second configura-
tion by exploiting a 2R-CISD wave function, thus enhancing the performance of the SR
CCSD approach.

In this paper, we first briefly describe basic idea of the RMR CCSD method and
subsequently apply it to the problem of the singlet–triplet separation in methylene. In
contrast to our earlier study of this problem, which used a rather small basis set1, we
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employ here a large basis set enabling a meaningful comparison with the experimental
data. This study thus represents one of the first large scale RMR CCSD applications.
We must also point out our earlier study of this problem that exploited the state univer-
sal (SU) MR CCSD method5,9 for the singlet state. We will thus be able to compare the
performance of SU CCSD and RMR CCSD employing both small and large basis sets.

RMR CCSD METHOD

The single reference coupled cluster method with singles and doubles (SR CCSD) that
is based on the exponential cluster Ansatz for the exact wave function |Ψ〉,

|Ψ〉 = eT |Φ0〉,      (T ≈ T1 + T2), (1)

is often used to efficiently account for the many-electron correlation effects, particu-
larly the dynamic ones. When the nondynamical correlation is also important, the SR
approach becomes inadequate and the zero-order wave function is required to involve
more than one configuration. The starting point of any MR approach is thus a proper
choice of the model space M0, M0 = Span{Φ0, Φ1, Φ2, …,ΦM – 1}, that can accommo-
date a zero-order wave function. Once this choice is made, all singles and doubles
relative to all the configurations |Φp〉 ∈ M0 should be explicitly considered via the
corresponding connected cluster amplitudes. However, since the generalization of the
SR cluster Ansatz to the MR case is not unambiguous, this requirement is handled
differently by various existing MR CC theories.

In the so-called state universal (SU) or Hilbert space MR CC approach, one associ-
ates a distinct cluster operator T(p) with each reference configuration |Φp〉 ∈ M0, and
employs the Jeziorski–Monkhorst cluster Ansatz13

|Ψq〉 = ∑ 
p = 0

M − 1

cqp e
T(p) |Φp〉  . (2)

At the SU CCSD level of the theory, one thus has to determine M sets of T1 and T2

cluster amplitudes. Of course, singles and doubles arising from other references than
|Φ0〉 can be regarded as a subset of higher than pair cluster amplitudes, so that we can
formally rewrite the MR CCSD wave function (2) in the SR CC form, namely

|Ψ0〉 = eT1 + T2 + {T 3 + T4 + …} subset |Φ0〉  . (3)
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The symbol {…} subset emphasizes that only a subset of relevant higher than pair cluster
amplitudes is involved. A formally SR, yet de facto an MR CC approach, based on such
an Ansatz, belongs to the so-called state selective or state specific (SS) category, which
in general includes a number of distinct approaches (see, e.g., ref.12). The Ansätze (2)
and (3) are equivalent in a sense that both involve the same number of connected clus-
ter amplitudes.

The general SU CC theory is an M-reference/M-state approach that employs an M
dimensional model space to simultaneously generate M target wave functions. The
major problems of such an approach, in addition to its complexity and computational
demands, are the so-called intruder state problem and the multiplicity of possible solu-
tions. The SS-type approaches can usually avoid these problems, since they handle one
state at a time: However, a general implementation of the Ansatz (3) is not easy, since
the subset of higher than pair clusters that are involved may contain even five- or
six-body, or even higher order clusters, when a large model space is employed.

The RMR CCSD method that is used in this study represents an SS-type approach,
thus avoiding the intruder state problem, yet is relatively easy to implement thanks to
the way it handles higher than pair clusters. As in other externally corrected CCSD
methods14–17, these are obtained from an independent source, which in the RMR CCSD
case is a suitable MR CISD wave function involving only a modest number of configu-
rations. Moreover, since a subset of the required higher than pair cluster amplitudes is
determined prior to the evaluation of the T1 and T2 clusters, only a subset of all possible
T3 and T4 cluster amplitudes needs to be explicitly determined, all higher order ones
being automatically accounter for implicitly. This is an essential feature of all exter-
nally corrected CCSD methods14–17. An earlier exploitation of this idea14–17 led to the
RMR CCSD approach, as described in our preceding papers1–3 (see also ref.12). In the
following we thus only give a brief description of this method.

Once we have chosen a suitable model or active space that can properly describe the
studied dissociation or reaction channel, the RMR CCSD method involves the follow-
ing three steps: First, we variationally optimize the linear version of the Ansatz (2) or
(3), obtaining the MR CISD wave function corresponding to the chosen model space.
Since the MR CISD method is based on the variation principle, the coefficients associ-
ated with individual configurations do not represent connected quantities in the sense of
the MBPT, but also contain the size nonextensive unlinked contributions.

Thus, in the second step, we extract connected cluster components from the chosen
MR CISD wave function. This is done via a standard cluster analysis. For the lowest
state of a given symmetry, we choose a leading configuration |Φ0〉 and express the MR
CISD wave function in the SR CI form,

|Ψ0〉 = |Φ0〉 + ∑ 
I

cI
0 |ΦI〉  , (4)
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where the configuration set {|ΦI〉} contains singles and doubles relative to |Φ0〉, as well
as the subset of higher than doubles as implied by Eq. (3). The cluster analysis is
carried out by expressing |Ψ0〉, Eq. (4), in the exponential form,

|Ψ0〉 = eT1
0 + T2

0 + T3
0 + T4

0 + … |Φ0〉  . (5)

The connected cluster components Ti
0 are obtained by comparing the right hand sides of

Eqs (4) and (5), proceeding from the lower rank clusters to the higher ones. However,
as already pointed out, at most T4

0 component needs to be evaluated. Note that we use
the superscript 0 to indicate that these cluster components are derived from the MR
CISD wave function. We also use the one- and two-body components T1

0 and T2
0 in the

next step as the initial guess when solving iteratively the externally corrected CCSD
equations.

In the third step, we employ the RMR CCSD Ansatz

|Ψ0〉 = eT1 + T2 + T3
0 + T4

0 + … |Φ0〉  , (6)

with T3
0 and T4

0 representing the fixed subset of three- and four-body cluster amplitudes
determined in the second step above. The unknown T1 and T2 amplitudes, Eq. (6), then
satisfy a set of SR CCSD-like equations that arise through a simple modification of
standard SR CCSD equations. This modification accounts for the coupling between the
unknown T1 and T2 clusters and the known T3

0 and T4
0 clusters. The resulting SR CCSD-

like equations are then referred to as the externally corrected CCSD equations (i.e., SR
CCSD corrected by known T3 and T4 from some external source). These equations are
no more difficult to solve than standard CCSD equations. Here we can clearly see why
only T3

0 and T4
0 are calculated in the cluster analysis (step 2 above): This is because

higher than four-body clusters are not directly coupled with T1 and T2.
The actual implementation of the RMR CCSD method, using various types of model

spaces, was described in our earlier papers1–3, where we refer an interested reader for
details.

COMPUTATIONAL DETAILS

The results presented below were obtained using two different basis sets: a double
zeta plus polarization (DZP) basis of Bauschlicher and Taylor7 and an atomic natu-
ral orbital (ANO) basis of Comeau et al.18. To facilitate a comparison with the exact
FCI results that are available for a DZP basis7, we also used the same geometries.
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For the details concerning the basis set and the geometries employed we refer the
reader to ref.7.

The large ANO basis set of Comeau et al.18 consists of a 5s4p3d2f1g set for the
carbon atom and a 3s2p1d set for hydrogen. A smaller, truncated ANO set, which does
not include g functions, was also employed. The equilibrium geometries used with this
basis were large scale MR CISD optimized geometries18. The bond distance and the
bond angle for the 3B1 state were, respectively, 1.079441 Å and 133.576°, and 1.111223 Å
and 101.954° for the 1A1 state.

Although all RMR CCSD results will be labelled by the acronym 2R-RMR CCSD,
we should point out that a slightly different version of this method was used with the
DZP and ANO basis sets. In the former case, the symmetry nonadapted 2-electron/2-orbital
(2,2) model space was used as the reference space, so that the MR CISD wave function
contained all single and double excitations from all configurations in the (2,2) space,
regardless whether symmetry adapted or not. Thus, although some of the reference
configurations are not symmetry adapted, and thus are absent from the wave function,
the single and double excitations from them may be symmetry adapted and will be
present in the wave function (and contribute to the energy). Nonetheless, these sym-
metry adapted singles and doubles that arise by excitations from symmetry nonadapted
references are usually negligible, so that it is more economical to keep only symmetry
adapted references. This option was implemented in the latter version of our RMR
CCSD programs, which were employed in calculations using a large ANO basis set.
Thus, in the latter case, the reference space for the 1A1 state has only two spin and
point-group symmetry adapted configurations.

We must also mention that the symmetry adapted (2,2) model space for the 3B1 state
involves only one configuration. Although, for the sake of brevity, we use the acronyms
2R or 2CSF also for the 3B1 state, we must keep in mind that in this case we deal in fact
with SR approaches, i.e., SR CISD or SR CCSD. The actual program that was used in
CC calculations employs the spin adapted CCSD method based on the unitary group
approach19,20 (UGA). Thus, for the 3B1 state, we have that UGA CCSD ≡ 2R-SU CCSD ≡
2R-RMR CCSD.

Throughout, only valence electrons are correlated, while the 1s core orbital of C is
kept frozen. The SCF orbitals are generated by GAMESS (ref.21). The same package is
also used for limited SR CI calculations, such as SR CISDT or SR CISDTQ. These
results are labelled with an additional superscript +, since the SR CI wave functions for
the open-shell triplet generated by GAMESS contain in fact more configurations than
the designated excitation level.

The implementation of SU CCSD is described elsewhere22.
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RESULTS AND DISCUSSIONS

Prior to investigating any computationally demanding model that is characterized by a
good quality basis set, it is expedient to assess the performance of the methods em-
ployed on a less demanding, yet realistic model, for which one can generate the exact
FCI results. In this way, a definite comparison, that is not encumbered by any uncer-
tainties, can be made. A DZP quality model of CH2 serves well this purpose.

It is well-known that the prediction of the energy differences is very sensitive to a
balanced description of the electron correlation in both states involved. To better ap-
preciate this problem, consider the energy difference between the states labelled by 1
and 2, i.e., ∆E = E1 – E2. Assuming the computed energies are Ei

(calc) = ρi Ei
(exact) for

states i = 1 and 2, the computed energy difference ∆E(calc) will be given by

∆E(calc) = 



ρ + 

ρ1 − ρ2

η



 ∆E(exact)  , (7)

where ρ = (ρ1 + ρ2)/2 and η = 2∆E(exact)/[E1
(exact) + E2

(exact)]. Since even the HF method
yields more than 99% of the total energy, implying that ρ ≈ 1, the error in the computed
∆E is fully determined by the imbalance ρ1 – ρ2. Since η is a very small number, even
a very small imbalance may lead to a sizeable error. For example, for the singlet–triplet
separation in CH2, η is only ≈0.05%. This means that even if we compute the energy of
state 1 with a 99.99% accuracy and with a 99.94% accuracy for state 2, the computed
singlet–triplet separation will be in error by 100%! This is precisely what happens
when we use the HF method: With a DZP basis set (see Table I), the SCF method
gives, respectively, 99.697% and 99.639% of the total exact energy (as given by the
FCI) for the 3B1 and 1A1 states. The 0.058% imbalance causes then almost 120% error
in the singlet–triplet separation. The same magnitude of the error is found even in the
HF limit. Since the correlation in the 1A1 state is slightly larger than in the 3B1 state
(0.36% of the total energy vs 0.3%), a well balanced correlated method should recover
a slightly larger fraction of the correlation energy for the 1A1 state than for the 3B1 state.
Thus, from the theoretical viewpoint, the primary challenge is to achieve an accurate
and balanced treatment of the correlation effects in the two states having a different
spin multiplicity.

For a DZP model, the performance of various SR, 2R, as well as large scale ap-
proaches employing all valence 6-electron/6-orbital active space, can be assessed by a
comparison with the exact FCI energies. In Table I we present total energies, percent-
ages of the recovered correlation energy, as well as the resulting singlet–triplet separ-
ations together with their deviation from the FCI value. The SR approaches are clearly
unsatisfactory. The error of both SR CISD and SR CISDT+ singlet–triplet separations is
about 22%. The SR CCSD provides already a much improved result. In particular, the
UGA CCSD error in the computed separation amounts to 0.85 kcal/mol, or 7%. Very
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similar results are obtained with UHF CCSD and spin-non-adapted ROHF CCSD
(ref.10). The source of the remaining error is the imbalance in the recovered correlation
energies, as already pointed out above. Thus, SR CISD recovers 2.38% more correla-
tion energy for the 3B1 state than for the 1A1 state, leading to a large error in the singlet–
triplet separation. This imbalance persists even for SR CISDT+, since both states gain
almost equally in correlation due to the inclusion of triples (2.1% vs 2.4%). The imbal-
ance in the recovered correlation energies for UGA CCSD is still 0.7%. For this reason
it is necessary to include quadruples in the SR CI methods or triples in the SR CC
methods in order to overcome an inequitable treatment of correlation effects in both
states involved. In either way, one then recovers almost 100% of the correlation energy
before the desired balance is achieved.

The ability of the MR CCSD type methods, including both RMR and SU CCSD, to
provide an equitable treatment of both states, and thus to properly describe highly sen-

TABLE I
Comparison of total energies (in a.u.), percentage correlation energies Ec (in %), and singlet–triplet
separations ∆ = E(3B1) – E(1A1) (in kcal/mol) for CH2, as obtained with a DZP basis and various
single- and multi-reference methods

Method E(3B1)
a E(1A1) Ec(

3B1) Ec(
1A1) ∆ Error

FCIb –39.046260 –39.027183 100.00  100.00  11.97 0.00

Single-reference approaches

SCF –38.927947 –38.886297  0.00  0.00 26.14 14.17 

SR CISD –39.041602 –39.018284 96.06 93.68 14.63 2.66

UGA CCSD –39.044064 –39.023639 98.14 97.48 12.82 0.85

SR CISDT+ –39.044420 –39.021176 98.44 95.74 14.58 2.61

UHF CCSDTc –39.046243 –39.026976 99.99 99.85 12.09 0.12

SR CISDTQ+ –39.046251 –39.027001 99.99 99.87 12.07 0.10

(2,2)-Active-space reference approachesa

2CSFb –38.927947 –38.907660  0.00 15.16 12.73 0.76

2CSF-CISDb –39.041602 –39.022156 96.06 96.43 12.20 0.23

2R-SU CCSDd –39.044064 –39.024914 98.14 98.39 12.02 0.05

2R-RMR CCSD –39.044064 –39.024826 98.14 98.33 12.05 0.08

Large-active-space reference approaches

CASSCFd –38.965954 –38.945529 32.12 42.04 12.82 0.85

CASSCF-CISDd –39.044872 –39.025804 98.83 99.02 11.97 0.00

a For the 3B1 state, a (2,2) active space reduces to a single reference. The actual results were obtained
with the interacting space UGA CCSD; b ref.7; c ref.10; d ref.9.
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sitive energetic quantities, such as the singlet–triplet separation in methylene, should be
apparent from Table I. As alluded to above, the origin of an unbalanced description of
both states by the SR, correlated methods stems from the presence of a rather strong
nondynamic correlation in the 1A1 state. Measured by the difference between the SCF
and 2CSF based treatments, the nondynamic correlation amounts to about 15% of the
total correlation energy. With 2R approaches, both nondynamic and dynamic correla-
tions can be well described. The 2CSF-CISD method recovers about 96% of correlation
for both triplet and singlet, with a small imbalance of 0.4%. The resulting singlet–triplet
separation is thus in error by 0.23 kcal/mol, i.e., by about 2%. Both MR CCSD
methods, 2R-RMR CCSD and 2R-SU CCSD, give even better results: Both recover
about 98% of the correlation energy in either state considered. Consequently, both ap-
proaches provide a very satisfactory result for the desired separation: The 2R-RMR
CCSD and 2R-SU CCSD errors are only 0.08 and 0.05 kcal/mol, respectively (cf. Table I).

When we compare the 2CSF-CISD result for the multireference state 1A1 with the
2R-RMR CCSD or 2R-SU CCSD one, we find that the latter CC approaches recover a
significantly larger portion of the dynamic correlation energy (by about 2.7 millihartree
or 2% more). This is easy to understand when we realize that the 2CSF-CISD wave
function contains only SD excitations from the two references, so that a large number
of higher excitations is not accounted for at all. On the other hand, the MR CC methods
employing the same 2R reference space are able to recover a large portion of the dy-
namic correlation effects thanks to the product terms involving lower excitations. Thus,
although the minimal 2-reference space is sufficiently large to handle nondynamic
correlation, one has to employ a much larger active space when using MR CISD in
order to recover more dynamic correlation. Indeed, when we use a 6-electron/6-orbital
(6,6) active space, the CASSCF SOCI recovers slightly more correlation energy than
the 2R-RMR CCSD or 2R-SU CCSD, and yields an excellent result for the singlet–triplet
splitting (cf. Table I). Nonetheless, the MR CC approaches clearly represent the most
efficient as well as economical way to adequately describe both dynamic and nondy-
namic correlation, while providing a balanced treatment for the triplet and singlet states
involved.

An excellent performance of the 2R-RMR and 2R-SU CCSD methods for a DZP
model provides a strong indication that with a sufficiently large basis set these methods
will yield reliable results that withstand a comparison with experiment. We hasten to
add, however, that such a comparison requires that we take into account zero-point
energies (ZPEs) of both states, relativistic effects, and Born–Oppenheimer corrections.
Correcting, thus, the experimentally determined separation T0 for the ZPEs, we obtain a
purely electronic value Te, and taking into account the relativistic and Born–Oppen-
heimer corrections, we get the desired “experimental” value Te

nr,BO, which can be
meaningfully compared with computed separations. In our previous paper5, we used the
value Te

nr,BO = 9.37 kcal/mol, resulting from the Te value of Jensen and Bunker23, the
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relativistic correction of Davidson et al.24 and the diagonal Born–Oppenheimer correction
of Handy et al.25 . We should mention, however, that the relativistic and Born–Oppen-
heimer corrections are often ignored: Even some very recent studies (cf., e.g., ref.26) do not
include them when comparing ab initio results with experiment.

The 2R-RMR CCSD results, obtained with a large ANO basis set, are compared with
the 2R-SU CCSD and large reference space MR CISD ones in Table II. In fact, in this
table we present only those results that give the energy gap below 10 kcal/mol. This
excludes a number of approaches. As already mentioned, even the standard SR CCSD
does not satisfy this criterion. For example, with UGA CCSD, the gap obtained with
the [5s4p3d2f1g;3s2p1d] ANO basis set is 10.48 kcal/mol. Similarly, with a basis set of
the [9s7p2d1f;5s2p] quality, the SR CCSDT-1 method gives the gap of 10.1 kcal/mol
(ref.8), as does CASSCF SOCI with a TZ2P(f,d) + diff basis (ref.26).

Using the [5s4p3d2f;3s2p1d] ANO basis set, the 3B1–
1A1 separation obtained with

the 2R-RMR CCSD method is 9.83 kcal/mol. When the g functions are added on the C
atom, the gap becomes 9.73 kcal/mol. This should be compared with the experimental
estimate of 9.37 kcal/mol. Compared with the corresponding 2R-SU CCSD result, the
2R-RMR CCSD gap is about 0.25 kcal/mol larger, so that the 2R-SU CCSD result is
closer to the experiment. Of course, these calculations have not yet reached the com-
plete basis set limit. Moreover, the experimental value may have an uncertainty of about
0.05 kcal/mol. Even theoretical estimates of the ZPE differ by 0.15 kcal/mol (see Table 3 of
ref.5). Although we used the value Te

nr,BO = 9.37 kcal/mol, as obtained  by Jensen and
Bunker23, the combination of all possible experimental bounds and two available ZPEs
from Table 3 of ref.5 imply a possible range for Te

nr,BO to be 9.35–9.62 kcal/mol. It is

TABLE II
Selected results for the singlet–triplet separation Te

nr,BO in CH2

Method Basis
E(3B1)

a.u.
E(1A1)

a.u.
Te

nr,BO

kcal/mol

2R-RMR CCSD 5s4p3d2f;3s2p1d –39.081028 –39.065361 9.83

5s4p3d2f1g;3s2p1d –39.082499 –39.066998 9.73

2R-SU CCSDa 5s4p3d2f;3s2p1d –39.081028 –39.065742 9.59

5s4p3d2f1g;3s2p1d –39.082499 –39.067393 9.48

(6,6)-CASSCF SOCIb 5s4p3d2f1g;4s3p2d –39.084972 –39.070250 9.23

CASSCF MRCIc 5s4p3d2f1g;3s2p1d –39.083083 –39.068308 9.27

CMRCId 9s7p2d1f;5s2p –39.1160  –39.1003  9.80

Experimenta 9.37

a Ref.9; b ref.27; c ref.18; d ref.28.
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unlikely that ab initio calculations can achieve a reliability of less than 0.2 kcal/mol.
The MR CISD calculations18,26–28 using a large active space predict separations ranging
from 9.23 to 10.1 kcal/mol.

Let us finally mention that the performance of the 2R-SU CCSD method with a large
ANO basis set was already examined in an earlier study5, where we refer the reader for
details. A good performance of the 2R-SU CCSD method was later reconfirmed by
Balková and Bartlett28, who used their two-determinant (TD) version of SU MR CCSD.

CONCLUSIONS

The RMR CCSD method was exploited to compute the singlet–triplet separation in
methylene, using both a DZP and a large ANO basis sets. This problem requires a
balanced treatment of both states involved. In turn, this requires that the method em-
ployed be capable to properly handle both dynamic and nondynamic correlation effects.
Although the standard SR CCSD method is very effective in handling dynamic correla-
tion, it is lacking when nondynamic correlation is present. On the other hand, the 2R-
CISD wave function describes well nondynamic correlation in the present case, but
leaves out a significant portion of the dynamic correlation effects. The above presented
results show that the 2R-RMR CCSD description, which essentially combines the 2R-CISD
and SR CCSD approaches, can overcome the weaknesses of both and provide an excel-
lent, yet affordable description of the studied problem.

The continued support by the National Science and Engineering Research Council of Canada (J. P.)
is gratefully acknowledged. The second author also gratefully acknowledges an Alexander von
Humboldt Research Award as well as the hospitality of Prof. G. H. F. Diercksen and the Max Planck
Institute for Astrophysics in Garching during his visit.

REFERENCES

 1. Li X., Paldus J.: J. Chem. Phys. 1997, 107, 6257.
 2. Li X., Paldus J.: J. Chem. Phys. 1998, 108, 637.
 3. Li X., Paldus J.: Chem. Phys. Lett. 1998, 286, 145.
 4. Meadows J. H., Schaefer III H. F.: J. Am. Chem. Soc. 1976, 98, 4383.
 5. Piecuch P., Li X., Paldus J.: Chem. Phys. Lett. 1994, 230, 377.
 6. Carter E. A., Goddard III W. A.: J. Chem. Phys. 1987, 86, 862.
 7. Bauschlicher C. W., Taylor P. R.: J. Chem. Phys. 1986, 85, 6510.
 8. Cole S. J., Purvis III G. D., Bartlett R. J.: Chem. Phys. Lett. 1985, 113, 271.
 9. Li X., Piecuch P., Paldus J.: Chem. Phys. Lett. 1994, 224, 267.
10. Watts J. D., Gauss J., Bartlett R. J.: J. Chem. Phys. 1993, 98, 8718.
11. Knowles P. J., Hampel C., Werner H.-J.: J. Chem. Phys. 1993, 99, 5219.
12. Paldus J., Li X.: Adv. Chem. Phys., in press.
13. Jeziorski B., Monkhorst H. J.: Phys. Rev. A: At., Mol., Opt. Phys. 1981, 24, 1668.
14. Paldus P., Cizek J., Takahashi M.: Phys. Rev. A: At., Mol., Opt. Phys. 1984, 30, 2193.
15. Paldus J., Planelles J.: Theor. Chim. Acta 1994, 89, 13.

1392 Li, Paldus:

Collect. Czech. Chem. Commun. (Vol. 63) (1998)



16. a) Planelles J., Paldus J., Li X.: Theor. Chim. Acta 1994, 89, 33; b) Planelles J., Paldus J., Li X.:
Theor. Chim. Acta 1994, 89, 59.

17. Li X., Peris G., Planelles J., Rajadell F., Paldus J.: J. Chem. Phys. 1997, 107, 90.
18. Comeau D. C., Shavitt I., Jensen P., Bunker P. R.: J. Chem. Phys. 1989, 90, 6491.
19. Li X., Paldus J.: J. Chem. Phys. 1994, 101, 8812.
20. Li X., Paldus J. in: Recent Advances in Computational Chemistry (R. J. Bartlett, Ed.), Vol. 3, p. 183.

World Scientific, Singapore 1997.
21. Schmidt M. W., Baldridge K. K., Boatz J. A., Elbert S. T., Gordon M. S., Jensen J. H., Koseki S.,

Matsunaga N., Nguyen K. A., Su S. J., Windus T. L., Dupuis M., Montgomery J. A.: J. Comput.
Chem. 1993, 14, 1347.

22. Piecuch P., Paldus J.: J. Chem. Phys. 1994, 101, 5875.
23. Jensen P., Bunker P. R.: J. Chem. Phys. 1988, 89, 1327.
24. Davidson E. R., Feller D., Phillips P.: Chem. Phys. Lett. 1980, 76, 416.
25. Handy N. C., Yamaguchi Y., Schaefer III H. F.: J. Chem. Phys. 1986, 84, 4481.
26. Yamaguchi Y., Schaefer III H. F.: Chem. Phys. 1997, 225, 23.
27. Bauschlicher C. W., Langhoff S. R., Taylor P. R.: J. Chem. Phys. 1987, 87, 387.
28. Werner H. J., Reinsch E.-A.: J. Chem. Phys. 1982, 76, 3144.
29. Balkova A., Bartlett R. J.: J. Chem. Phys. 1995, 102, 7116.

Singlet–Triplet Splitting in Methylene 1393

Collect. Czech. Chem. Commun. (Vol. 63) (1998)


